
JhedAI Research Paper Series

Simulación Cuántico-Inspirada y Optimización
AutoML de Circuitos Cuánticos Variacionales en

Arquitecturas GPU Clásicas
Julio Hofflinger — Director de Operaciones, JhedAI, Chile​

Contacto: julio@jhedai.com

Abstract

This paper proposes a quantum-inspired
simulation framework for the automatic
optimization of Variational Quantum
Circuits (VQCs) on classical GPU
architectures.​
​
The approach combines vectorized
simulation of VQCs with an AutoML
module based on Graph Neural Networks
(GCN) that predicts circuit performance
and ranks candidate architectures.​
​
Additionally, the framework integrates
SABRE transpilation, heavy-hex qubit
layout, and realistic noise modeling (T₁,
T₂, readout) for reproducible
quantum-classical experiments.​
​
It also leverages Tensorcore-accelerated
simulation (TANQ-Sim) and Qiskit Aer’s
StatevectorSimulator for hybrid GPU
performance, creating a bridge between
theoretical quantum design and practical
classical execution.

Resumen

Este trabajo propone un marco de
simulación cuántico-inspirada para la
optimización automática de Variational
Quantum Circuits (VQC) sobre
arquitecturas clásicas basadas en GPU.​
​
El enfoque combina la simulación
vectorizada de VQC con un módulo
AutoML basado en Graph Neural
Networks (GCN) que predice el
rendimiento de los circuitos y clasifica las
arquitecturas candidatas.

El marco integra la transpilación SABRE,
el layout heavy-hex, la simulación
acelerada por Tensorcore (TANQ-Sim) y
el modelado de ruido realista (T₁, T₂,
readout) para experimentos
cuántico-clásicos reproducibles.​ ​
​
El resultado es un puente entre la
computación cuántica teórica y la
optimización práctica sobre hardware
clásico GPU.

1. Introducción

Los Variational Quantum Circuits (VQC) constituyen un paradigma fundamental del
Quantum Machine Learning al usar compuertas cuánticas parametrizadas para
representar funciones complejas.​
​
Dada la limitada disponibilidad de hardware cuántico real y la fragilidad de los
dispositivos NISQ, las simulaciones cuántico-inspiradas en GPU representan una
alternativa eficiente para investigar el comportamiento, expresividad y estabilidad de los
VQC.

Este trabajo propone una metodología que combina simulación vectorizada, AutoML
predictivo y modelado de ruido físico.​
​
El objetivo del estudio es diseñar y validar un marco híbrido GPU-QML que permita
optimizar automáticamente arquitecturas VQC, considerando restricciones de topología
real (heavy-hex), transpilación SABRE y métricas reproducibles de ruido y fidelidad.

2. Marco Teórico y Fundamentos

2.1. Formalismo Matemático de los VQC

●​ Un VQC se define como una unidad unitaria parametrizada W(Θ), ompuesta por
L bloques variacionales Vj(θj).

●​ Un codificador de entrada U(λ) mapea los datos clásicos λ a ángulos de rotación.
●​ La medición produce valores de expectación de Pauli-Z en cada qubit, generando

un vector de embedding z(λ):​
​

⟨Zk​⟩=⟨0∣U†(λ)W†(Θ)Zk​W(Θ)U(λ)∣0⟩​ ​ ​ (1)

Donde:​
⟨Zk​⟩: Valor esperado del operador Pauli-Z sobre el qubit k​.​
∣0⟩: Estado base inicial.​
U(λ): Codificador de datos.​
El Operador †: Conjugado transpuesto.​
​
Define la medición promedio del observable Zk​ sobre el estado final del sistema.​

Forma equivalente (estado puro):

⟨Zk​⟩=⟨𝛹∣Zk​∣𝛹⟩, con ∣𝛹⟩= W(Θ)U(λ)∣0⟩⊗n​

2.2. Simulación Cuántico-Inspirada

La simulación vectorizada se implementa sobre GPU con soporte Tensorcore, siguiendo
la metodología de TANQ-Sim (2025).​
​
Esta permite operar con matrices densas complejas en precisión mixta FP16/FP32,
logrando hasta 4× de mejora frente a simulaciones FP64.​
​
Se adopta un mapeo angular suave mediante función arctangente para reducir aliasing
numérico [Sim et al., 2019] y conservar continuidad de fase.​
​
La fase global del vector de estado se ignora por no afectar los valores medibles.

La arquitectura híbrida utiliza un modelo noisy-statevector, en el que cada operación
puede incorporar canales de Kraus representando efectos físicos de decoherencia (T₁, T₂)
y errores de lectura. ​
​
Esta estrategia permite reproducir condiciones experimentales de dispositivos reales en
entornos GPU controlados.​
​

𝑥′=arctan(𝑊𝑥𝑥+𝑏)​ ​ ​ ​ ​ ​ ​ ​ (2)​
​
Donde:​
𝑥: Vector de datos clásicos (𝐑d);​
𝑊𝑥: Matriz de proyección (n×d);​
𝑏: Vector de sesgos;​
𝑥′: Vector de ángulos ((−π/2,π/2)n);​
arctan: Mapeo suave y diferenciable.​
​
Reemplaza el clipping clásico por una función continua para preservar gradientes
y estabilidad en GPU.

Figura 1. Flujo cuántico-inspirado ejecutado sobre GPU. El pipeline integra
codificación U(𝝀), bloques V(𝞡), medición ⟨Zk⟩ y cabeza clásica (softmax). Incluye
además la transpilación SABRE, layout heavy-hex y la inyección de ruido físico.

2.3. Integración AutoML-VQC

El módulo AutoML representa los circuitos como grafos, donde los nodos corresponden
a compuertas y las aristas a dependencias lógicas.​
​
Una Graph Convolutional Network (GCN) se pre-entrena mediante reconstrucción de
características enmascaradas (masked feature reconstruction) y se ajusta finamente con
una pérdida de ranking tipo hinge loss:​
​

L=max(0,𝔪−(​ŷ​j​−​ŷ​i​))​ ​ ​ ​ ​ (6)

Pérdida hinge-ranking entre predicciones ŷ​j​,​ŷ​i​ ​ con margen 𝔪>0. (Basada en Situa et al.,
2025). De este modo, las arquitecturas pueden ordenarse según rendimiento estimado y
seleccionarse las más prometedoras para entrenamiento completo.

​
​

2.4. Ruido, Transpilación y Layout

Para garantizar correspondencia con hardware IBM real, se aplica transpilación SABRE
en tres etapas:

1.​ Layout selection: asigna qubits lógicos a físicos según la conectividad
heavy-hex.

2.​ Routing optimization: inserta SWAPs mínimos para respetar restricciones
topológicas.

3.​ Gate simplification: fusiona y cancela compuertas redundantes.

El flujo permite evaluar la fidelidad antes y después de la transpilación, midiendo la
profundidad y el costo computacional en GPU.​
​
Los efectos de ruido (decoherencia y lectura) se modelan mediante canales de Kraus
integrados, generando una simulación noise-aware reproducible.​

𝝆′= ​Ei​ρEi
†​​ ​ ​ ​ ​ ​ ​ ​ (9)​

𝑖
∑

Figura 2. Comparación en layout heavy-hex: izquierda, cadena CNOT con SWAPs
(mayor profundidad); derecha, acoplamientos RZZ más expresivos pero sensibles al
ruido.

3. Metodología Propuesta

La metodología desarrollada busca integrar en un mismo marco computacional tres
componentes centrales:

1.​ Simulación cuántico-inspirada en GPU,
2.​ Optimización automática mediante AutoML-GCN, y
3.​ Entrenamiento jerárquico conjunto de modelos híbridos cuántico-clásicos.

Este sistema permite evaluar y comparar arquitecturas variacionales bajo condiciones
realistas, incluyendo ruido físico, limitaciones de conectividad (heavy-hex) y
transpilación efectiva (SABRE).​
​
A continuación, se detallan los elementos que conforman el flujo completo de
procesamiento y entrenamiento.

3.1. Arquitectura y Flujo de Entrenamiento

El sistema integra tres componentes principales:

1.​ Simulador VQC en GPU (PyTorch/CUDA): ejecutado sobre el backend
StatevectorSimulator de Qiskit Aer, configurado con device='GPU' y
precision='single'. El objetivo es emular la evolución cuántica de los circuitos
variacionales mediante operaciones matriciales vectorizadas.​

2.​ Modelo híbrido cuántico-clásico: las salidas del VQC —representada por el
vector de expectativas 𝑧(𝑥)—se conectan a una cabeza MLP. El modelo híbrido
aprende a mapear representaciones cuánticas a etiquetas o valores continuos en
tareas de clasificación o regresión.​

3.​ Predictor AutoML-GCN: Un modelo AutoML basado en Graph Convolutional
Networks analiza la estructura topológica de cada circuito VQC (nodos como
compuertas y aristas como dependencias) y estima su rendimiento antes del
entrenamiento completo, permitiendo seleccionar las arquitecturas más
prometedoras (Top-K).

3.2. Estructura Matemática del Modelo

El modelo híbrido conecta el circuito variacional con una capa densa final a través
de una transformación lineal:

𝑦 = softmax(𝑊c𝑧(𝑥)+𝑏c) ​ ​ ​ ​ (5)​
​
Donde: ​
𝑊c,𝑏c: pesos y sesgos de la capa MLP (modelo clásico); softmax: normaliza el vector de
salida como probabilidades; 𝑧(𝑥): vector de expectativas de Pauli-Z obtenido tras la
medición cuántica.​
​
El conjunto de parámetros 𝜭 (cuánticos) y ϕ = (𝑊c,𝑏c) (clásicos) se optimiza de manera
conjunta mediante retropropagación híbrida, con gradientes calculados sobre amplitudes
vectorizadas.​
​

H(𝚤+1)=𝜎(D̃ 𝐴̃ D̃ H(l)W(𝚤))​ ​ ​ ​ ​ (7)​− 1
2 − 1

2

​
Propagación normalizada de una GCN.​
​
Donde: ​
H(𝚤): matriz de activaciones en la capa 𝚤;

𝐴 ̃=A+I: adyacencia con auto-conexiones;

D̃: matriz diagonal de grados normalizada (𝐷̃); ​

Definimos D̃ii = j 𝐴 ̃i j, de modo que D̃ 𝐴 ̃ D̃ es la forma simétricamente normalizada.​∑ − 1
2 − 1

2

W(𝚤): pesos de la capa 𝚤.​
​
𝜎(⋅): función de activación no lineal, en este caso función ReLU.

3.4. Pérdida AutoML y entrenamiento jerárquico

La GCN se entrena con (6) y se usa para filtrar Top-K. Luego se entrena íntegramente ese
subconjunto en GPU. La pérdida total conjunta:

Ltotal​=LAutoML​+ α LVQC​​ ​ ​ ​ ​ ​ (12)

Donde: LAutoML​: Ranking (6); LVQC​: Pérdida de tarea; α: Ponderación.

3.5. Métrica de validación
​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (10)​
​
Donde: ​
𝜌: correlación de Spearman; di: diferencia de rangos real-predicho; N: número de
arquitecturas. 𝜌∈[−1,1].​
​
3.6. Pipeline operativo (Figura 2)

1.​ Simulación GPU: U(λ) → V(Θ)→ ⟨Zk⟩ (Ecs. 2, 9).
2.​ Predicción AutoML: GCN (Ecs. 7, 6).
3.​ Optimización final: Top-K + pérdida conjunta (Ec. 12).

Figura 3. Flujo AutoML-VQC en tres etapas: pre-entrenamiento auto-supervisado
(reconstrucción enmascarada), ajuste fino con pérdida de ranking y selección Top-K con
entrenamiento completo.

3.7. Hiperparámetros y configuración

AdamW, lr = , batch 128, 30–50 épocas, FP16 (autocast), gradient clipping 2 * 10−3

1.0, checkpointing en circuitos profundos, n≤16 qubits.

4. Ecuaciones Clave del Circuito

(2) Mapa de características​
​

𝑥′=arctan(𝑊𝑥𝑥+𝑏)​ ​ ​ ​ ​ ​ ​ (2)​
​
Esta ecuación transforma el vector clásico de entrada 𝑥 (dimensión d) en un vector
angular 𝑥′ (dimensión n, igual al número de qubits). ​
​
𝑊𝑥 es una matriz de pesos que proyecta los datos al espacio de los qubits, y 𝑏 es un vector
de sesgos.​
​
La función arctan(⋅) realiza un mapeo suave al rango (−π/2,π/2), garantizando que los
valores puedan interpretarse como ángulos de rotación físicos para compuertas cuánticas.

Este mapeo reemplaza al clipping tradicional 𝑥′=clip(𝑊𝑥𝑥,[−π,π]), introduciendo
continuidad y estabilidad de gradiente. La elección de arctan⁡ se justifica porque su
derivada arctan (𝑥) = , es continua y acotada, lo que evita saturaciones fuertes y 𝑑

𝑑𝑥
1

1+𝑥2

favorece gradientes estables en GPU.”

(3) Bloque variacional​

Vj​(θj
​)= Ry​(θj,k​)CNOT(k,k+1)​ ​ ​ ​ ​ ​ (3)​​

𝑘
∏

El bloque variacional Vj​(θj
​) se compone de rotaciones alrededor del eje Y (Ry​(θj,k​))

aplicadas a cada qubit, seguidas de una cadena de compuertas CNOT que entrelazan
qubits adyacentes.​

El producto indica aplicación secuencial de compuertas sobre los qubits k.​
𝑘
∏

Cada parámetro θj,k​ es entrenable y define la amplitud de rotación individual.

Esta formulación sintetiza el esquema hardware-efficient ansatz descrito por Sim et al.
(2019), adaptado a GPU. El orden rotación–CNOT–rotación se eligió por su estabilidad
numérica en entornos vectorizados.

(4) Vector de Expectativas Cuánticas

𝑧(𝑥)=[⟨Z1​⟩,⟨Z2​⟩,...,⟨Zn​⟩]​ ​ ​ ​ ​ ​ ​ (4)​
​
El vector 𝑧(𝑥) agrupa los valores esperados de Pauli-Z de cada qubit tras la medición.
Cada componente ⟨Zk​⟩ está en el rango [−1,1] y describe la probabilidad relativa de medir
0 o 1 en el qubit k​.

Este vector actúa como representación (embedding) cuántico-inspirada que se conecta a
una red neuronal clásica (MLP).​
​
(8) Estado cuántico final

∣ψ(Θ,λ)⟩=W(Θ) U(λ) ∣0⟩⊗n​ ​ ​ ​ ​ ​ (8)

Evolución unitaria explícita desde el estado base. (Propuesta; conecta con Ec. 1).

(11) Expectación con estados mixtos

⟨Zk⟩=Tr(ρ Zk)​ ​ ​ ​ ​ ​ ​ ​ ​ (11)​
​
Cálculo de expectativa sobre ρ (matriz de densidad). (Propuesta; extensión ruidosa de
Ec. 1).

​
5. Resultados Esperados e Hipótesis

●​ H1: Los embeddings cuántico-inspirados superarán a una MLP clásica
equivalente en datasets no lineales.​

●​ H2: AutoML-GCN logrará ρ>0.7, entrenando sólo 10–20 % de las arquitecturas
con ≥ 95 % del mejor rendimiento.​

●​ H3: Simulación de ~16 qubits viable en GPU gama media-alta con FP16 y
ruido modelado.​

6. Discusión y Limitaciones

Escalabilidad: coste O(2n). Barren plateaus: gradientes pequeños en ansätze profundos.
Entrelazamiento físico: emulado matemáticamente. Ruido: se incluye decoherencia (T₁,
T₂) y readout, no fluctuaciones térmicas.​
​
Evidencia previa (Situa et al., 2025) reporta ρ=0.84 entre rendimiento real y predicho
(7–8 qubits), apoyando la viabilidad del enfoque AutoML-GCN. SABRE + TANQ-Sim
aportan realismo y reproducibilidad.

7. Conclusión

Se presenta un marco cuántico-inspirado que integra simulación vectorizada en GPU,
AutoML-GCN predictivo, transpilación SABRE y modelado de ruido realista. El
enfoque reduce coste de exploración, prioriza Top-K prometedoras y analiza el impacto
del routing y el ruido en el rendimiento. Este puente operativo entre teoría variacional y
práctica en GPU habilita un nuevo paradigma de diseño cuántico autoasistido.

7.1. Aportes

(1) Simulación GPU ruidosa reproducible; (2) AutoML estructural con GCN; (3)
Entrenamiento jerárquico conjunto; (4) Transpilación y layout realista; (5) Pipeline
transferible.

7.2. Futuro

Meta-aprendizaje (Quantum-Train Agent), mitigación adaptativa de barren plateaus,
compresión tensorial (MPS/TTN/PEPS), validación en hardware (IBM Q, IonQ) y
escalado multi-GPU (Ray/DeepSpeed).

8. Referencias

[1] Cerezo et al., Variational Quantum Algorithms, NRP 3(9):625–644, 2021.​
[2] Sim, Johnson & Aspuru-Guzik, Adv. Quantum Technologies 2(12):1900070, 2019.​
[3] Liu et al., Programming Variational Quantum Circuits with Quantum-Train Agent,
Preprint, 2024.​
[4] Situa et al., AutoML-Driven Optimization of VQCs, SSRN 5167459, 2025.​
[5] IBM Quantum Docs — Transpilation Optimizations with SABRE, 2025.​
[6] IBM Quantum Docs — Transpiler Stages Guide, 2025.​
[7] arXiv:2404.13184v2 — Noise-Aware Quantum Simulation on GPUs, 2024.​
[8] TANQ-Sim: Tensorcore Accelerated Noisy Quantum Simulation, 2025.

9. Nota Institucional

Este trabajo corresponde a una investigación personal desarrollada por Julio Hofflinger,
como parte de un estudio independiente sobre simulación cuántico-inspirada y
optimización AutoML aplicada a circuitos variacionales.

El contenido integra conocimientos adquiridos durante su trabajo en JhedAI, pero no
representa necesariamente una línea institucional oficial.

Su propósito es contribuir al avance de la investigación aplicada en computación cuántica
e inteligencia artificial desde América Latina.

	1. Introducción
	2. Marco Teórico y Fundamentos
	2.1. Formalismo Matemático de los VQC
	2.2. Simulación Cuántico-Inspirada
	2.3. Integración AutoML-VQC
	​​
	2.4. Ruido, Transpilación y Layout

	
	3. Metodología Propuesta
	3.1. Arquitectura y Flujo de Entrenamiento
	
	3.2. Estructura Matemática del Modelo
	3.5. Métrica de validación
	
	3.7. Hiperparámetros y configuración
	AdamW, lr =2*10−3, batch 128, 30–50 épocas, FP16 (autocast), gradient clipping 1.0, checkpointing en circuitos profundos, n≤16 qubits.
	4. Ecuaciones Clave del Circuito
	(11) Expectación con estados mixtos

	
	6. Discusión y Limitaciones
	7. Conclusión
	7.1. Aportes
	7.2. Futuro

	
	8. Referencias
	
	9. Nota Institucional

