JhedAlI Research Paper Series

Simulacion Cuantico-Inspirada y Optimizacion
AutoML de Circuitos Cuanticos Variacionales en
Arquitecturas GPU Clasicas

Julio Hofflinger — Director de Operaciones, JhedAl, Chile
Contacto: julio@jhedai.com

Abstract

This paper proposes a quantum-inspired
simulation framework for the automatic

optimization of Variational Quantum
Circuits (VQCs) on classical GPU
architectures.

The approach combines vectorized

simulation of VQCs with an AutoML
module based on Graph Neural Networks
(GCN) that predicts circuit performance
and ranks candidate architectures.

Additionally, the framework integrates
SABRE transpilation, heavy-hex qubit
layout, and realistic noise modeling (Ti,
To, readout) for reproducible
quantum-classical experiments.

It also leverages Tensorcore-accelerated
simulation (TANQ-Sim) and Qiskit Aer’s
hybrid GPU
performance, creating a bridge between

StatevectorSimulator for

theoretical quantum design and practical
classical execution.

Resumen
Este trabajo propone un marco de
simulacion cuantico-inspirada para la

optimizaciéon automadtica de Variational
Quantum (VQO) sobre
arquitecturas clasicas basadas en GPU.

Circuits

El enfoque combina la simulacion
vectorizada de VQC con un modulo
AutoML basado en Graph Neural
Networks (GCN) que predice el
rendimiento de los circuitos y clasifica las

arquitecturas candidatas.

El marco integra la transpilacion SABRE,
el layout heavy-hex, la simulacion
acelerada por Tensorcore (TANQ-Sim) y
el modelado de ruido realista (Ti, T,
readout) para experimentos
cuantico-clésicos reproducibles.

El resultado es un puente entre la
teorica y la
sobre hardware

computacion cuantica
optimizacion practica

clasico GPU.

1. Introduccion

Los Variational Quantum Circuits (VQC) constituyen un paradigma fundamental del
Quantum Machine Learning al usar compuertas cuanticas parametrizadas para
representar funciones complejas.

Dada la limitada disponibilidad de hardware cuantico real y la fragilidad de los
dispositivos NISQ, las simulaciones cuantico-inspiradas en GPU representan una
alternativa eficiente para investigar el comportamiento, expresividad y estabilidad de los
VQC.

Este trabajo propone una metodologia que combina simulacion vectorizada, AutoML
predictivo y modelado de ruido fisico.

El objetivo del estudio es disefar y validar un marco hibrido GPU-QML que permita
optimizar automaticamente arquitecturas VQC, considerando restricciones de topologia
real (heavy-hex), transpilacion SABRE y métricas reproducibles de ruido y fidelidad.

2. Marco Tedrico y Fundamentos

2.1. Formalismo Matematico de los VQC

e Un VQC se define como una unidad unitaria parametrizada W(®), ompuesta por
L bloques variacionales Vj(0j).

e Un codificador de entrada U(A) mapea los datos clasicos A a dngulos de rotacion.

e La medicioén produce valores de expectacion de Pauli-Z en cada qubit, generando
un vector de embedding z()):

(Z)=0IU' M) W'(@)ZW(O)U(M) [0) (D

Donde:

(Z,): Valor esperado del operador Pauli-Z sobre ¢l qubit k.
|0): Estado base inicial.

U(A): Codificador de datos.

El Operador 1: Conjugado transpuesto.

Define la medicion promedio del observable Z, sobre el estado final del sistema.

Forma equivalente (estado puro):
(Zy=(P1Z, | P), con | &)= W(®)UR) [0)™

2.2. Simulacion Cuantico-Inspirada

La simulacion vectorizada se implementa sobre GPU con soporte Tensorcore, siguiendo
la metodologia de TANQ-Sim (2025).

Esta permite operar con matrices densas complejas en precision mixta FP16/FP32,
logrando hasta 4x de mejora frente a simulaciones FP64.

Se adopta un mapeo angular suave mediante funcién arctangente para reducir aliasing
numérico [Sim et al., 2019] y conservar continuidad de fase.

La fase global del vector de estado se ignora por no afectar los valores medibles.

La arquitectura hibrida utiliza un modelo noisy-statevector, en el que cada operacion
puede incorporar canales de Kraus representando efectos fisicos de decoherencia (T, T2)
y errores de lectura.

Esta estrategia permite reproducir condiciones experimentales de dispositivos reales en
entornos GPU controlados.

x'=arctan(W x+b) (2)

Donde:

x: Vector de datos clasicos (RY);

W,: Matriz de proyeccion (nxd);

b: Vector de sesgos;

x": Vector de angulos ((—n/2,m/2)");
arctan: Mapeo suave y diferenciable.

Reemplaza el clipping clasico por una funcién continua para preservar gradientes
y estabilidad en GPU.

{ " SABRE) SABRE

a e
NS
*if Classical Head
Data Encoding 5 (Softmax

u(e)

Classical
Input
X

Output

- e 3 - ol Y
1 Physical Noise Injection |
1 (T, T, Readout) H

Figura 1. Flujo cuantico-inspirado ejecutado sobre GPU. El pipeline integra
codificacion U(A), bloques V(0), medicion (Z,) y cabeza clasica (softmax). Incluye
ademas la transpilacion SABRE, layout heavy-hex y la inyeccion de ruido fisico.

2.3. Integracion AutoML-VQC

El modulo AutoML representa los circuitos como grafos, donde los nodos corresponden
a compuertas y las aristas a dependencias logicas.

Una Graph Convolutional Network (GCN) se pre-entrena mediante reconstruccion de
caracteristicas enmascaradas (masked feature reconstruction) y se ajusta finamente con
una pérdida de ranking tipo hinge loss:

L=max(0,m—~(§;~§,)) (6)

Pérdida hinge-ranking entre predicciones §;,9; con margen m>0. (Basada en Situa et al.,
2025). De este modo, las arquitecturas pueden ordenarse segun rendimiento estimado y
seleccionarse las mas prometedoras para entrenamiento completo.

2.4. Ruido, Transpilacion y Layout

Para garantizar correspondencia con hardware IBM real, se aplica transpilacion SABRE
en tres etapas:

1. Layout selection: asigna qubits logicos a fisicos segun la conectividad
heavy-hex.

2. Routing optimization: inserta SWAPs minimos para respetar restricciones
topoldgicas.

3. Gate simplification: fusiona y cancela compuertas redundantes.

El flujo permite evaluar la fidelidad antes y después de la transpilacion, midiendo la
profundidad y el costo computacional en GPU.

Los efectos de ruido (decoherencia y lectura) se modelan mediante canales de Kraus
integrados, generando una simulacion noise-aware reproducible.

Q':ZEiPEiT 9)
i

CNOT-Chain RZZ Couplings
(Deeper, More SWAPS) (Expresive, Noise-Senstive)

Figura 2. Comparacion en layout heavy-hex: izquierda, cadena CNOT con SWAPs
(mayor profundidad); derecha, acoplamientos RZZ mas expresivos pero sensibles al
ruido.

3. Metodologia Propuesta

La metodologia desarrollada busca integrar en un mismo marco computacional tres
componentes centrales:

1. Simulacion cuantico-inspirada en GPU,
2. Optimizacién automatica mediante AutoML-GCN, y
3. Entrenamiento jerarquico conjunto de modelos hibridos cuantico-clasicos.

Este sistema permite evaluar y comparar arquitecturas variacionales bajo condiciones
realistas, incluyendo ruido fisico, limitaciones de conectividad (heavy-hex) y
transpilacion efectiva (SABRE).

A continuacion, se detallan los elementos que conforman el flujo completo de
procesamiento y entrenamiento.

3.1. Arquitectura y Flujo de Entrenamiento

El sistema integra tres componentes principales:

1. Simulador VQC en GPU (PyTorch/CUDA): ejecutado sobre el backend
StatevectorSimulator de Qiskit Aer, configurado con device='GPU' vy
precision='single'. El objetivo es emular la evolucion cuéntica de los circuitos
variacionales mediante operaciones matriciales vectorizadas.

2. Modelo hibrido cuantico-clasico: las salidas del VQC —representada por el
vector de expectativas z(x)—se conectan a una cabeza MLP. El modelo hibrido
aprende a mapear representaciones cuanticas a etiquetas o valores continuos en
tareas de clasificacion o regresion.

3. Predictor AutoML-GCN: Un modelo AutoML basado en Graph Convolutional
Networks analiza la estructura topoldgica de cada circuito VQC (nodos como
compuertas y aristas como dependencias) y estima su rendimiento antes del
entrenamiento completo, permitiendo seleccionar las arquitecturas mas
prometedoras (Top-K).

3.2. Estructura Matematica del Modelo

El modelo hibrido conecta el circuito variacional con una capa densa final a través
de una transformacion lineal:

y = softmax(W_ z(x)+b,) &)

Donde:

Web.: pesosy sesgos de la capa MLP (modelo clasico); softmax: normaliza el vector de
salida como probabilidades; z(x): vector de expectativas de Pauli-Z obtenido tras la
medicion cuantica.

El conjunto de parametros O (cuanticos) y ¢ = (W,,b.) (clasicos) se optimiza de manera
conjunta mediante retropropagacion hibrida, con gradientes calculados sobre amplitudes
vectorizadas.

H=¢(D~ 7 A D~ THOWO®) (7)

Propagacion normalizada de una GCN.

Donde:

H®: matriz de activaciones en la capa t;
A=A+I: adyacencia con auto-conexiones;

D: matriz diagonal de grados normalizada (D);

. ~ ~ R I o .
Definimos D;=)}; A;;, de modo que D™z A D™ 7 es la forma simétricamente normalizada.

W(2): pesos de la capa 1.
o(-): funcidn de activacidn no lineal, en este caso funcién ReLLU.
3.4. Pérdida AutoML y entrenamiento jerarquico

La GCN se entrena con (6) y se usa para filtrar Top-K. Luego se entrena integramente ese
subconjunto en GPU. La pérdida total conjunta:

Liota=LauomLt @ LVQC (12)

Donde: Ljyomi: Ranking (6); Lyqc: Pérdida de tarea; a: Ponderacion.

3.5. Métrica de validacion

e
=N o) (10)
Donde:

o: correlacion de Spearman; d;: diferencia de rangos real-predicho; N: numero de
arquitecturas. p€[—1,1].

3.6. Pipeline operativo (Figura 2)

1. Simulacion GPU: U(A) — V(®)— (Zk) (Ecs. 2, 9).
2. Prediccion AutoML: GCN (Ecs. 7, 6).
3. Optimizacion final: Top-K + pérdida conjunta (Ec. 12).

AutoML-Driven VQGC Optimization Pipeline

(a) Self-Supersived (b) Fine-Tuning with (c) Top-K Selection and
Pre-Training Hinge-Ranking Loss Full Training
(Masked Feature
Reconsurction) - N p .
Ar—IA Az

- ~ Hinge-Ranking Loss A Fr——I0
[]]k F—I+ F—H A

D l_r' Ass—|D 8=h Ar=—D
'_(“K |:> | > H*l_ y _c+ll—|

Ar=——=IA =D
Hl—IH- Hl—I+
r\ l/‘\ O Circuit A: Score 0.92 / i Optimized VQQ
O Circuit A: Score 0.95
1 T N O Circuit B: Score 0.95 -
Loss Loss function O GNN Embedings; 78 Full Training Loss
\. J \ J \ J

Figura 3. Flujo AutoML-VQC en tres etapas: pre-entrenamiento auto-supervisado
(reconstruccion enmascarada), ajuste fino con pérdida de ranking y seleccion Top-K con
entrenamiento completo.

3.7. Hiperparametros y configuracion

AdamW, [r =2 * 10_3, batch 128, 30-50 épocas, FP16 (autocast), gradient clipping
1.0, checkpointing en circuitos profundos, n<16 qubits.

4. Ecuaciones Clave del Circuito

(2) Mapa de caracteristicas

x'=arctan(W x+b) (2)

Esta ecuacion transforma el vector cldsico de entrada x (dimension d) en un vector
angular x’ (dimensién n, igual al nimero de qubits).

W, es una matriz de pesos que proyecta los datos al espacio de los qubits, y b es un vector
de sesgos.

La funcidén arctan(-) realiza un mapeo suave al rango (—n/2,n/2), garantizando que los
valores puedan interpretarse como angulos de rotacion fisicos para compuertas cuanticas.

Este mapeo reemplaza al clipping tradicional x'=clip(Wx,[—m,x]), introduciendo
continuidad y estabilidad de gradiente. La eleccion de arctan se justifica porque su

. d 1 . . .
derivada — arctan (x) = —, €s continua y acotada, lo que evita saturaciones fuertes y
1+x

favorece gradientes estables en GPU.”

(3) Bloque variacional
Vi(0)=T1R(8;,0CNOT i +1) (3)
k

El bloque variacional V;(0;) se compone de rotaciones alrededor del eje Y (R,(0;,))
aplicadas a cada qubit, seguidas de una cadena de compuertas CNOT que entrelazan
qubits adyacentes.

El producto [] indica aplicacion secuencial de compuertas sobre los qubits k.
k

Cada parametro 0; es entrenable y define la amplitud de rotacion individual.

Esta formulacion sintetiza el esquema hardware-efficient ansatz descrito por Sim et al.
(2019), adaptado a GPU. El orden rotacion—CNOT-rotacion se eligid por su estabilidad
numeérica en entornos vectorizados.

(4) Vector de Expectativas Cuanticas
Z(x):[<zl>9<z2>>' .. ><Zn>] (4)

El vector z(x) agrupa los valores esperados de Pauli-Z de cada qubit tras la medicion.
Cada componente (Z,) esta en el rango [—1,1] y describe la probabilidad relativa de medir
0 o 1 en el qubit k.

Este vector actiia como representacion (embedding) cuantico-inspirada que se conecta a
una red neuronal clasica (MLP).

(8) Estado cuantico final
J— ®
[w(©,1))=W(®) U(L) 10)™ (8)
Evolucion unitaria explicita desde el estado base. (Propuesta; conecta con Ec. 1).

(11) Expectacion con estados mixtos

(Z)=Tr(p Z,) (11)

Célculo de expectativa sobre p (matriz de densidad). (Propuesta, extension ruidosa de
Ec. 1).

5. Resultados Esperados e Hipotesis

e HI1: Los embeddings cuantico-inspirados superaran a una MLP clésica
equivalente en datasets no lineales.

e H2: AutoML-GCN lograra p>0.7, entrenando sélo 10-20 % de las arquitecturas
con = 95 % del mejor rendimiento.

e H3: Simulacion de ~16 qubits viable en GPU gama media-alta con FP16 y
ruido modelado.

6. Discusion y Limitaciones

Escalabilidad: coste O(2"). Barren plateaus: gradientes pequenos en ansédtze profundos.
Entrelazamiento fisico: emulado matematicamente. Ruido: se incluye decoherencia (T},
T-) y readout, no fluctuaciones térmicas.

Evidencia previa (Situa et al., 2025) reporta p=0.84 entre rendimiento real y predicho
(7-8 qubits), apoyando la viabilidad del enfoque AutoML-GCN. SABRE + TANQ-Sim
aportan realismo y reproducibilidad.

7. Conclusion

Se presenta un marco cudntico-inspirado que integra simulacioén vectorizada en GPU,
AutoML-GCN predictivo, transpilacion SABRE y modelado de ruido realista. El
enfoque reduce coste de exploracion, prioriza Top-K prometedoras y analiza el impacto
del routing y el ruido en el rendimiento. Este puente operativo entre teoria variacional y
practica en GPU habilita un nuevo paradigma de disefio cuadntico autoasistido.

7.1. Aportes

(1) Simulacion GPU ruidosa reproducible; (2) AutoML estructural con GCN; (3)
Entrenamiento jerarquico conjunto; (4) Transpilacién y layout realista; (5) Pipeline
transferible.

7.2. Futuro

Meta-aprendizaje (Quantum-Train Agent), mitigacion adaptativa de barren plateaus,
compresion tensorial (MPS/TTN/PEPS), validacion en hardware (IBM Q, IonQ) y
escalado multi-GPU (Ray/DeepSpeed).

8. Referencias

[1] Cerezo et al., Variational Quantum Algorithms, NRP 3(9):625-644, 2021.

[2] Sim, Johnson & Aspuru-Guzik, Adv. Quantum Technologies 2(12):1900070, 2019.

[3] Liu et al., Programming Variational Quantum Circuits with Quantum-Train Agent,
Preprint, 2024.

[4] Situa et al., AutoML-Driven Optimization of VQCs, SSRN 5167459, 2025.

[5] IBM Quantum Docs — Transpilation Optimizations with SABRE, 2025.

[6] IBM Quantum Docs — Transpiler Stages Guide, 2025.

[7] arXiv:2404.13184v2 — Noise-Aware Quantum Simulation on GPUs, 2024.

[8] TANQ-Sim: Tensorcore Accelerated Noisy Quantum Simulation, 2025.

9. Nota Institucional

Este trabajo corresponde a una investigacion personal desarrollada por Julio Hofflinger,
como parte de un estudio independiente sobre simulacién cudntico-inspirada y
optimizacién AutoML aplicada a circuitos variacionales.

El contenido integra conocimientos adquiridos durante su trabajo en JhedAl, pero no
representa necesariamente una linea institucional oficial.

Su propdsito es contribuir al avance de la investigacion aplicada en computacion cuantica
e inteligencia artificial desde América Latina.

	1. Introducción
	2. Marco Teórico y Fundamentos
	2.1. Formalismo Matemático de los VQC
	2.2. Simulación Cuántico-Inspirada
	2.3. Integración AutoML-VQC
	​​
	2.4. Ruido, Transpilación y Layout

	
	3. Metodología Propuesta
	3.1. Arquitectura y Flujo de Entrenamiento
	
	3.2. Estructura Matemática del Modelo
	3.5. Métrica de validación
	
	3.7. Hiperparámetros y configuración
	AdamW, lr =2*10−3, batch 128, 30–50 épocas, FP16 (autocast), gradient clipping 1.0, checkpointing en circuitos profundos, n≤16 qubits.
	4. Ecuaciones Clave del Circuito
	(11) Expectación con estados mixtos

	
	6. Discusión y Limitaciones
	7. Conclusión
	7.1. Aportes
	7.2. Futuro

	
	8. Referencias
	
	9. Nota Institucional

