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Abstract 

This paper proposes a quantum-inspired 
simulation framework for the automatic 
optimization of Variational Quantum 
Circuits (VQCs) on classical GPU 
architectures.​
​
The approach combines vectorized 
simulation of VQCs with an AutoML 
module based on Graph Neural Networks 
(GCN) that predicts circuit performance 
and ranks candidate architectures.​
​
Additionally, the framework integrates 
SABRE transpilation, heavy-hex qubit 
layout, and realistic noise modeling (T₁, 
T₂, readout) for reproducible 
quantum-classical experiments.​
​
It also leverages Tensorcore-accelerated 
simulation (TANQ-Sim) and Qiskit Aer’s 
StatevectorSimulator for hybrid GPU 
performance, creating a bridge between 
theoretical quantum design and practical 
classical execution. 

Resumen 

Este trabajo propone un marco de 
simulación cuántico-inspirada para la 
optimización automática de Variational 
Quantum Circuits (VQC) sobre 
arquitecturas clásicas basadas en GPU.​
​
El enfoque combina la simulación 
vectorizada de VQC con un módulo 
AutoML basado en Graph Neural 
Networks (GCN) que predice el 
rendimiento de los circuitos y clasifica las 
arquitecturas candidatas. 

El marco integra la transpilación SABRE, 
el layout heavy-hex, la simulación 
acelerada por Tensorcore (TANQ-Sim) y 
el modelado de ruido realista (T₁, T₂, 
readout) para experimentos 
cuántico-clásicos reproducibles.​ ​
​
El resultado es un puente entre la 
computación cuántica teórica y la 
optimización práctica sobre hardware 
clásico GPU. 



1. Introducción 

Los Variational Quantum Circuits (VQC) constituyen un paradigma fundamental del 
Quantum Machine Learning al usar compuertas cuánticas parametrizadas para 
representar funciones complejas.​
​
Dada la limitada disponibilidad de hardware cuántico real y la fragilidad de los 
dispositivos NISQ, las simulaciones cuántico-inspiradas en GPU representan una 
alternativa eficiente para investigar el comportamiento, expresividad y estabilidad de los 
VQC. 

Este trabajo propone una metodología que combina simulación vectorizada, AutoML 
predictivo y modelado de ruido físico.​
​
El objetivo del estudio es diseñar y validar un marco híbrido GPU-QML que permita 
optimizar automáticamente arquitecturas VQC, considerando restricciones de topología 
real (heavy-hex), transpilación SABRE y métricas reproducibles de ruido y fidelidad. 

2. Marco Teórico y Fundamentos 

2.1. Formalismo Matemático de los VQC 

●​ Un VQC se define como una unidad unitaria parametrizada W(Θ), ompuesta por 
L bloques variacionales Vj(θj). 

●​ Un codificador de entrada U(λ) mapea los datos clásicos λ a ángulos de rotación. 
●​ La medición produce valores de expectación de Pauli-Z en cada qubit, generando 

un vector de embedding z(λ):​
​

⟨Zk​⟩=⟨0∣U†(λ)W†(Θ)Zk​W(Θ)U(λ)∣0⟩​    ​   ​    (1) 

Donde:​
⟨Zk​⟩: Valor esperado del operador Pauli-Z sobre el qubit k​.​
∣0⟩: Estado base inicial.​
U(λ): Codificador de datos.​
El Operador †: Conjugado transpuesto.​
​
Define la medición promedio del observable Zk​ sobre el estado final del sistema.​

 



Forma equivalente (estado puro):  

⟨Zk​⟩=⟨𝛹∣Zk​∣𝛹⟩, con ∣𝛹⟩= W(Θ)U(λ)∣0⟩⊗n​  

2.2. Simulación Cuántico-Inspirada 

La simulación vectorizada se implementa sobre GPU con soporte Tensorcore, siguiendo 
la metodología de TANQ-Sim (2025).​
​
Esta permite operar con matrices densas complejas en precisión mixta FP16/FP32, 
logrando hasta 4× de mejora frente a simulaciones FP64.​
​
Se adopta un mapeo angular suave mediante función arctangente para reducir aliasing 
numérico [Sim et al., 2019] y conservar continuidad de fase.​
​
La fase global del vector de estado se ignora por no afectar los valores medibles. 

La arquitectura híbrida utiliza un modelo noisy-statevector, en el que cada operación 
puede incorporar canales de Kraus representando efectos físicos de decoherencia (T₁, T₂) 
y errores de lectura. ​
​
Esta estrategia permite reproducir condiciones experimentales de dispositivos reales en 
entornos GPU controlados.​
​

𝑥′=arctan(𝑊𝑥𝑥+𝑏)​ ​ ​ ​ ​ ​  ​ ​    (2)​
​
Donde:​
𝑥: Vector de datos clásicos (𝐑d);​
𝑊𝑥: Matriz de proyección (n×d);​
𝑏: Vector de sesgos;​
𝑥′: Vector de ángulos ((−π/2,π/2)n );​
arctan: Mapeo suave y diferenciable.​
​
Reemplaza el clipping clásico por una función continua para preservar gradientes 
y estabilidad en GPU. 



Figura 1. Flujo cuántico-inspirado ejecutado sobre GPU. El pipeline integra 
codificación U(𝝀), bloques V(𝞡), medición ⟨Zk⟩ y cabeza clásica (softmax). Incluye 
además la transpilación SABRE, layout heavy-hex y la inyección de ruido físico. 

2.3. Integración AutoML-VQC 

El módulo AutoML representa los circuitos como grafos, donde los nodos corresponden 
a compuertas y las aristas a dependencias lógicas.​
​
Una Graph Convolutional Network (GCN) se pre-entrena mediante reconstrucción de 
características enmascaradas (masked feature reconstruction) y se ajusta finamente con 
una pérdida de ranking tipo hinge loss:​
​

L=max(0,𝔪−(​ŷ​j​−​ŷ​i​))​ ​ ​     ​      ​                    (6) 

Pérdida hinge-ranking entre predicciones ŷ​j​,​ŷ​i​ ​ con margen 𝔪>0. (Basada en Situa et al., 
2025). De este modo, las arquitecturas pueden ordenarse según rendimiento estimado y 
seleccionarse las más prometedoras para entrenamiento completo. 

​
​

 



2.4. Ruido, Transpilación y Layout 

Para garantizar correspondencia con hardware IBM real, se aplica transpilación SABRE 
en tres etapas: 

1.​ Layout selection: asigna qubits lógicos a físicos según la conectividad 
heavy-hex. 

2.​ Routing optimization: inserta SWAPs mínimos para respetar restricciones 
topológicas. 

3.​ Gate simplification: fusiona y cancela compuertas redundantes. 

El flujo permite evaluar la fidelidad antes y después de la transpilación, midiendo la 
profundidad y el costo computacional en GPU.​
​
Los efectos de ruido (decoherencia y lectura) se modelan mediante canales de Kraus 
integrados, generando una simulación noise-aware reproducible.​

𝝆′= ​Ei​ρEi
†​​ ​ ​         ​ ​ ​ ​                       ​      (9)​

𝑖
∑

Figura 2. Comparación en layout heavy-hex: izquierda, cadena CNOT con SWAPs 
(mayor profundidad); derecha, acoplamientos RZZ más expresivos pero sensibles al 
ruido. 

 



3. Metodología Propuesta 

La metodología desarrollada busca integrar en un mismo marco computacional tres 
componentes centrales: 

1.​ Simulación cuántico-inspirada en GPU, 
2.​ Optimización automática mediante AutoML-GCN, y 
3.​ Entrenamiento jerárquico conjunto de modelos híbridos cuántico-clásicos. 

Este sistema permite evaluar y comparar arquitecturas variacionales bajo condiciones 
realistas, incluyendo ruido físico, limitaciones de conectividad (heavy-hex) y 
transpilación efectiva (SABRE).​
​
A continuación, se detallan los elementos que conforman el flujo completo de 
procesamiento y entrenamiento. 

3.1. Arquitectura y Flujo de Entrenamiento 

El sistema integra tres componentes principales: 

1.​ Simulador VQC en GPU (PyTorch/CUDA): ejecutado sobre el backend 
StatevectorSimulator de Qiskit Aer, configurado con device='GPU' y 
precision='single'. El objetivo es emular la evolución cuántica de los circuitos 
variacionales mediante operaciones matriciales vectorizadas.​
 

2.​ Modelo híbrido cuántico-clásico: las salidas del VQC —representada por el 
vector de expectativas 𝑧(𝑥)—se conectan a una cabeza MLP. El modelo híbrido 
aprende a mapear representaciones cuánticas a etiquetas o valores continuos en 
tareas de clasificación o regresión.​
 

3.​ Predictor AutoML-GCN: Un modelo AutoML basado en Graph Convolutional 
Networks analiza la estructura topológica de cada circuito VQC (nodos como 
compuertas y aristas como dependencias) y estima su rendimiento antes del 
entrenamiento completo, permitiendo seleccionar las arquitecturas más 
prometedoras (Top-K). 

 



3.2. Estructura Matemática del Modelo 

El modelo híbrido conecta el circuito variacional con una capa densa final a través 
de una transformación lineal: 

𝑦 = softmax(𝑊c𝑧(𝑥)+𝑏c)        ​ ​ ​ ​                    (5)​
​
Donde:  ​
𝑊c,𝑏c:  pesos y sesgos de la capa MLP (modelo clásico); softmax: normaliza el vector de 
salida como probabilidades; 𝑧(𝑥): vector de expectativas de Pauli-Z obtenido tras la 
medición cuántica.​
​
El conjunto de parámetros 𝜭 (cuánticos) y ϕ = (𝑊c,𝑏c) (clásicos) se optimiza de manera 
conjunta mediante retropropagación híbrida, con gradientes calculados sobre amplitudes 
vectorizadas.​
​

H(𝚤+1)=𝜎(D̃  𝐴̃ D̃ H(l)W(𝚤))​ ​ ​ ​ ​            (7)​− 1
2 − 1

2

​
Propagación normalizada de una GCN.​
​
Donde: ​
H(𝚤): matriz de activaciones en la capa 𝚤; 

𝐴 ̃=A+I: adyacencia con auto-conexiones; 

D̃: matriz diagonal de grados normalizada (𝐷̃); ​

Definimos D̃ii = j 𝐴 ̃i j, de modo que D̃  𝐴 ̃ D̃  es la forma simétricamente normalizada.​∑ − 1
2 − 1

2

W(𝚤): pesos de la capa 𝚤.​
​
𝜎(⋅): función de activación no lineal, en este caso función ReLU. 

3.4. Pérdida AutoML y entrenamiento jerárquico 

La GCN se entrena con (6) y se usa para filtrar Top-K. Luego se entrena íntegramente ese 
subconjunto en GPU. La pérdida total conjunta: 

Ltotal​=LAutoML​+ α LVQC​​ ​ ​ ​ ​ ​                (12) 

Donde:  LAutoML​: Ranking (6); LVQC​: Pérdida de tarea; α: Ponderación. 



3.5. Métrica de validación 
​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (10)​
​
Donde: ​
𝜌: correlación de Spearman; di: diferencia de rangos real-predicho; N: número de 
arquitecturas. 𝜌∈[−1,1].​
​
3.6. Pipeline operativo (Figura 2) 

1.​ Simulación GPU: U(λ) → V(Θ)→ ⟨Zk⟩ (Ecs. 2, 9). 
2.​ Predicción AutoML: GCN (Ecs. 7, 6). 
3.​ Optimización final: Top-K + pérdida conjunta (Ec. 12). 

Figura 3. Flujo AutoML-VQC en tres etapas: pre-entrenamiento auto-supervisado 
(reconstrucción enmascarada), ajuste fino con pérdida de ranking y selección Top-K con 
entrenamiento completo. 

 



3.7. Hiperparámetros y configuración 

AdamW, lr = , batch 128, 30–50 épocas, FP16 (autocast), gradient clipping 2 * 10−3

1.0, checkpointing en circuitos profundos, n≤16 qubits. 

4. Ecuaciones Clave del Circuito 

(2) Mapa de características​
​

𝑥′=arctan(𝑊𝑥𝑥+𝑏)​ ​ ​ ​ ​ ​ ​            (2)​
​
Esta ecuación transforma el vector clásico de entrada 𝑥 (dimensión d) en un vector 
angular 𝑥′ (dimensión n, igual al número de qubits). ​
​
𝑊𝑥 es una matriz de pesos que proyecta los datos al espacio de los qubits, y 𝑏 es un vector 
de sesgos.​
​
La función arctan(⋅) realiza un mapeo suave al rango (−π/2,π/2), garantizando que los 
valores puedan interpretarse como ángulos de rotación físicos para compuertas cuánticas. 

Este mapeo reemplaza al clipping tradicional 𝑥′=clip(𝑊𝑥𝑥,[−π,π]), introduciendo 
continuidad y estabilidad de gradiente. La elección de arctan⁡ se justifica porque su 
derivada  arctan (𝑥) = , es continua y acotada, lo que evita saturaciones fuertes y 𝑑

𝑑𝑥
1

1+𝑥2

favorece gradientes estables en GPU.” 

(3) Bloque variacional​

Vj​(θj
​)= Ry​(θj,k​)CNOT(k,k+1)​ ​ ​ ​ ​        ​      (3)​​

𝑘
∏

El bloque variacional Vj​(θj
​) se compone de rotaciones alrededor del eje Y (Ry​(θj,k​)) 

aplicadas a cada qubit, seguidas de una cadena de compuertas CNOT que entrelazan 
qubits adyacentes.​

El producto  indica aplicación secuencial de compuertas sobre los qubits k.​
𝑘
∏

Cada parámetro θj,k​ es entrenable y define la amplitud de rotación individual. 

Esta formulación sintetiza el esquema hardware-efficient ansatz descrito por Sim et al. 
(2019), adaptado a GPU. El orden rotación–CNOT–rotación se eligió por su estabilidad 
numérica en entornos vectorizados. 



(4) Vector de Expectativas Cuánticas 

𝑧(𝑥)=[⟨Z1​⟩,⟨Z2​⟩,...,⟨Zn​⟩]​ ​ ​ ​ ​ ​  ​    (4)​
​
El vector 𝑧(𝑥) agrupa los valores esperados de Pauli-Z de cada qubit tras la medición. 
Cada componente ⟨Zk​⟩ está en el rango [−1,1] y describe la probabilidad relativa de medir 
0 o 1 en el qubit k​. 

Este vector actúa como representación (embedding) cuántico-inspirada que se conecta a 
una red neuronal clásica (MLP).​
​
(8) Estado cuántico final 

∣ψ(Θ,λ)⟩=W(Θ) U(λ) ∣0⟩⊗n​ ​ ​ ​ ​    ​      (8) 

Evolución unitaria explícita desde el estado base. (Propuesta; conecta con Ec. 1). 

(11) Expectación con estados mixtos 

⟨Zk⟩=Tr(ρ Zk)​ ​ ​ ​ ​ ​ ​ ​ ​  (11)​
​
Cálculo de expectativa sobre ρ (matriz de densidad). (Propuesta; extensión ruidosa de 
Ec. 1). 

​
5. Resultados Esperados e Hipótesis 

●​ H1: Los embeddings cuántico-inspirados superarán a una MLP clásica 
equivalente en datasets no lineales.​
 

●​ H2: AutoML-GCN logrará ρ>0.7, entrenando sólo 10–20 % de las arquitecturas 
con ≥ 95 % del mejor rendimiento.​
 

●​ H3: Simulación de ~16 qubits viable en GPU gama media-alta con FP16 y 
ruido modelado.​
 

 



6. Discusión y Limitaciones 

Escalabilidad: coste O(2n). Barren plateaus: gradientes pequeños en ansätze profundos. 
Entrelazamiento físico: emulado matemáticamente. Ruido: se incluye decoherencia (T₁, 
T₂) y readout, no fluctuaciones térmicas.​
​
Evidencia previa (Situa et al., 2025) reporta ρ=0.84 entre rendimiento real y predicho 
(7–8 qubits), apoyando la viabilidad del enfoque AutoML-GCN. SABRE + TANQ-Sim 
aportan realismo y reproducibilidad. 

7. Conclusión 

Se presenta un marco cuántico-inspirado que integra simulación vectorizada en GPU, 
AutoML-GCN predictivo, transpilación SABRE y modelado de ruido realista. El 
enfoque reduce coste de exploración, prioriza Top-K prometedoras y analiza el impacto 
del routing y el ruido en el rendimiento. Este puente operativo entre teoría variacional y 
práctica en GPU habilita un nuevo paradigma de diseño cuántico autoasistido. 

7.1. Aportes 

(1) Simulación GPU ruidosa reproducible; (2) AutoML estructural con GCN; (3) 
Entrenamiento jerárquico conjunto; (4) Transpilación y layout realista; (5) Pipeline 
transferible. 

7.2. Futuro 

Meta-aprendizaje (Quantum-Train Agent), mitigación adaptativa de barren plateaus, 
compresión tensorial (MPS/TTN/PEPS), validación en hardware (IBM Q, IonQ) y 
escalado multi-GPU (Ray/DeepSpeed). 
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9. Nota Institucional 

Este trabajo corresponde a una investigación personal desarrollada por Julio Hofflinger, 
como parte de un estudio independiente sobre simulación cuántico-inspirada y 
optimización AutoML aplicada a circuitos variacionales. 

El contenido integra conocimientos adquiridos durante su trabajo en JhedAI, pero no 
representa necesariamente una línea institucional oficial. 

Su propósito es contribuir al avance de la investigación aplicada en computación cuántica 
e inteligencia artificial desde América Latina. 
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